Welcome to Abella 2.0.5-dev
Abella < Define eq : A -> A -> prop by
eq X X.
Abella < Type p A -> o.
Abella < Theorem eq_non_schm [A,B] :
forall X Y, eq (p X) (p Y) -> false.
============================
forall X Y, eq (p X) (p Y) -> false
eq_non_schm < intros.
Variables: X Y
H1 : eq (p X) (p Y)
============================
false
eq_non_schm < skip.
Proof completed.
Abella < Theorem true_thm_with_no_schematic_proof [A,B] :
forall X F, exists Y, eq (p X) (p Y) \/ (eq (p X) (p Y) -> false).
============================
forall X F, exists Y, eq (p X) (p Y) \/ (eq (p X) (p Y) -> false)
true_thm_with_no_schematic_proof < skip.
Proof completed.
Abella <