Click on a command or tactic to see a detailed view of its use.
Specification "trans". Import "typing". [View typing] %% Contexts for code hoisting Define ch_ctx : olist -> prop by ch_ctx nil; nabla x, ch_ctx ((ch x (htm cnil (hbase x))) :: L) := ch_ctx L. Define vars_of_ch_ctx : olist -> tm'_list -> prop by vars_of_ch_ctx nil cnil; vars_of_ch_ctx ((ch X (htm cnil (hbase X))) :: L) (ccons X L') := vars_of_ch_ctx L L'. Theorem ch_ctx_mem : forall L E, ch_ctx L -> member E L -> exists X, E = (ch X (htm cnil (hbase X))) /\ name' X. Theorem ch_ctx_ctx'_sync : forall L Vs CL M, vars_of_ch_ctx CL Vs -> vars_of_ctx' L Vs -> member (ch M (htm cnil (hbase M))) CL -> exists T, member (of' M T) L.induction on 3. intros. case H3. case H1. case H2. search. case H1. case H2. apply IH to _ _ H4. search.% Lemmas for auxiliary predicates Theorem cappend_str : forall L M1 M2 M3, ch_ctx L -> {L |- cappend M1 M2 M3} -> {cappend M1 M2 M3}.induction on 2. intros. case H2. search. apply IH to _ H3. search. apply ch_ctx_mem to _ H4. case H3.Theorem hconstr_str : forall L M R M', ch_ctx L -> {L |- hconstr M R M'} -> {hconstr M R M'}.induction on 2. intros. case H2. search. apply IH to _ H3. search. apply ch_ctx_mem to _ H4. case H3.Theorem hcombine_str : forall L M1 M2 R M', ch_ctx L -> {L |- hcombine M1 M2 R M'} -> {hcombine M1 M2 R M'}.induction on 2. intros. case H2. search. apply IH to _ H3. search. apply IH to _ H3. search. apply ch_ctx_mem to _ H4. case H3.Theorem hcombine3_str : forall L M1 M2 M3 R M', ch_ctx L -> {L |- hcombine3 M1 M2 M3 R M'} -> {hcombine3 M1 M2 M3 R M'}.induction on 2. intros. case H2. search. apply IH to _ H3. search. apply IH to _ H3. search. apply IH to _ H3. search. apply ch_ctx_mem to _ H4. case H3.Theorem hcombine_abs_str : forall L M R R' M', ch_ctx L -> {L |- hcombine_abs M R R' M'} -> {hcombine_abs M R R' M'}.induction on 2. intros. case H2. search. apply IH to _ H3. search. apply IH to _ H3. search. apply ch_ctx_mem to _ H4. case H3.Theorem crev_str : forall L L1 L2 L3, ch_ctx L -> {L |- crev L1 L2 L3} -> {crev L1 L2 L3}.induction on 2. intros. case H2. search. apply IH to _ H3. search. apply ch_ctx_mem to _ H4. case H3.Theorem tm'_list_to_tuple_str : forall L L' T, ch_ctx L -> {L |- tm'_list_to_tuple L' T} -> {tm'_list_to_tuple L' T}.induction on 2. intros. case H2. search. apply IH to _ H3. search. apply ch_ctx_mem to _ H4. case H3.Theorem hoist_abs_str : forall L R f l FA R' F', ch_ctx L -> {L |- hoist_abs R f l FA R' F'} -> {hoist_abs R f l FA R' F'}.induction on 2. intros. case H2. apply crev_str to _ H3. apply tm'_list_to_tuple_str to _ H4. search. apply IH to _ H3. search. apply ch_ctx_mem to _ H4. case H3.Theorem abstract_str : forall L R R' F, ch_ctx L -> {L |- abstract R R' F} -> {abstract R R' F}. Theorem hconstr_typ_pres : forall L FE M M' T T' R, nabla x, ctx' L -> {L |- of'' (htm FE M) T} -> {of' x T |- of' (R x) T'} -> {hconstr M R M'} -> {L |- of'' (htm FE M') T'}.induction on 4. intros. case H4. case H2. inst H3 with n1 = M1. cut H6 with H5. search. apply ctx'_mem to _ H6. case H5. case H2. apply of'_is_cty to _ H6. assert {of' n2 T |- of' (R n2) T'}. apply IH to _ H7 H9 H5 with x = n2. search. apply ctx'_mem to _ H7. case H6.Theorem hcombine_typ_pres : forall L FE1 FE2 FE M1 M2 M T1 T2 T R, nabla x y, ctx' L -> {L |- of'' (htm FE1 M1) T1} -> {L |- of'' (htm FE2 M2) T2} -> {of' x T1, of' y T2 |- of' (R x y) T} -> {hcombine M1 M2 R M} -> {cappend FE1 FE2 FE} -> {L |- of'' (htm FE M) T}.induction on 5. intros. case H5. case H2. case H3. case H6. inst H4 with n1 = M4, n2 = M3. cut H9 with H7. cut H10 with H8. search. % Context cases apply ctx'_focus_inv to _ _ H8. apply ctx'_focus_inv to _ _ H7. case H2. case H6. assert {L, of' n1 T3 |- of'' (htm FE2 M2) T2}. assert {of' n2 T1, of' n3 T2 |- of' (R n2 n3) T}. apply of'_is_cty to _ H8. apply IH to _ H9 H11 H12 H7 _. search. % Context case apply ctx'_focus_inv to _ _ H8. case H2(keep). case H3. case H6. assert {L, of' n1 T3 |- of'' (htm cnil (hbase M3)) T1}. assert {of' n2 T1, of' n3 T2 |- of' (R n2 n3) T}. apply of'_is_cty to _ H9. apply IH to _ H11 H10 H12 H7 _. search. % Context case apply ctx'_focus_inv to _ _ H9. apply ctx'_focus_inv to _ _ H8.Theorem hcombine3_typ_pres : forall L FE1 FE2 FE3 FE12 FE M1 M2 M3 M T1 T2 T3 T R, nabla x y z, ctx' L -> {L |- of'' (htm FE1 M1) T1} -> {L |- of'' (htm FE2 M2) T2} -> {L |- of'' (htm FE3 M3) T3} -> {of' x T1, of' y T2, of' z T3 |- of' (R x y z) T} -> {hcombine3 M1 M2 M3 R M} -> {cappend FE1 FE2 FE12} -> {cappend FE12 FE3 FE} -> {L |- of'' (htm FE M) T}.induction on 6. intros. case H6. case H2. case H3. case H4. case H7. case H8. inst H5 with n1 = M6, n2 = M5, n3 = M4. cut H12 with H9. cut H13 with H10. cut H14 with H11. search. % Context cases apply ctx'_focus_inv to _ _ H11. apply ctx'_focus_inv to _ _ H10. apply ctx'_focus_inv to _ _ H9. case H2. case H7. case H8. assert {L, of' n1 T4 |- of'' (htm FE2 M2) T2}. assert {L, of' n1 T4 |- of'' (htm FE3 M3) T3}. apply of'_is_cty to _ H10. apply IH to _ H11 H14 H15 _ H9 _ _. search. % Context case apply ctx'_focus_inv to _ _ H10. case H2. case H3. case H7. case H8. assert {L, of' n1 T4 |- of'' (htm FE3 M3) T3}. assert {L, of' n1 T4 |- of'' (htm cnil (hbase M5)) T1}. apply of'_is_cty to _ H11. apply IH to _ H15 H12 H14 _ H9 _ _. search. % Context cases apply ctx'_focus_inv to _ _ H11. apply ctx'_focus_inv to _ _ H10. case H2. case H3. case H4. case H7. case H8. assert {L, of' n1 T4 |- of'' (htm cnil (hbase M5)) T1}. assert {L, of' n1 T4 |- of'' (htm cnil (hbase M4)) T2}. apply of'_is_cty to _ H12. apply IH to _ H14 H15 H13 _ H9 _ _. search. % Context cases apply ctx'_focus_inv to _ _ H12. apply ctx'_focus_inv to _ _ H11. apply ctx'_focus_inv to _ _ H10.Theorem hcombine_abs_let_typ_pres : forall L FE1 FE2 FE M1 R M T1 T, nabla x, ctx' L -> {L |- of'' (htm FE1 M1) T1} -> {L, of' x T1 |- of'' (htm FE2 (R x)) T} -> {hcombine_abs M1 R (x\y\let' x y) M} -> {cappend FE1 FE2 FE} -> {L |- of'' (htm FE M) T}.induction on 4. intros. case H4. apply of''_is_cty to _ H2. case H2. case H3. case H5. search. % Context cases apply ctx'_focus_inv to _ _ H8. apply ctx'_focus_inv to _ _ H7. case H2. case H5. assert {L, of' n1 T2, of' n2 T1 |- of'' (htm FE2 (R n2)) T}. apply of'_is_cty to _ H7. apply IH to _ H8 H10 H6 H9. search. % Context case apply ctx'_focus_inv to _ _ H7. apply of''_is_cty to _ H2. case H2(keep). case H3. case H5. assert {L, of' n2 T2 |- of'' (htm cnil (hbase M2)) T1}. assert {L, of' n2 T2, of' n1 T1 |- of'' (htm FE4 (R1 n1 n2)) T}. apply of'_is_cty to _ H8. apply of'_is_cty to _ H9. inst H6 with n1 = n2. apply IH to _ H11 H12 H15 _. apply of'_str to _ _ H9. search. % Context case apply ctx'_focus_inv to _ _ H9. apply ctx'_focus_inv to _ _ H8.Theorem hoist_abs_fun_typ : forall L T1 T2 TE R R' G E FA F, nabla x, ctx' L -> {is_cty T1} -> {L, of' x T1 |- of''_body TE (R x) T2} -> {hoist_abs R G E FA R' F} -> {L, of' E TE, of' x T1 |- of' (F x) T2}.induction on 4. intros. case H4. case H3. search. apply ctx'_focus_inv to _ _ H7. case H3. assert {L, of' n2 T3, of' n1 T1 |- of''_body TE1 (R1 n1 n2) T2}. inst H5 with n1 = n2. apply is_cty_str to _ H7. apply IH to _ _ H8 H9. assert {of' E (prod T3 TE1) |- of' (snd' E) TE1}. cut H11 with H12. search. apply ctx'_focus_inv to _ _ H6.Theorem abstract_fun_typ : forall L T1 T2 TE R R' F, nabla x, ctx' L -> {is_cty T1} -> {L, of' x T1 |- of''_body TE (R x) T2} -> {abstract R R' F} -> nabla l, {L, of' l TE, of' x T1 |- of' (F l x) T2}. Define ctx'_env_typ_split : olist -> ty -> ty -> prop by ctx'_env_typ_split nil TE TE; ctx'_env_typ_split (of' X T :: L') TE' TE := ctx'_env_typ_split L' (prod T TE') TE. % ctx2' L L1 L2 holds iff (L = L1,L2) Define ctx2' : olist -> olist -> olist -> prop by ctx2' L L nil := ctx' L; nabla x, ctx2' (of' x T :: L) L1 (of' x T :: L2) := ctx2' L L1 L2 /\ {is_cty T}. Theorem ctx2'_nil1 : forall L L2, ctx2' L nil L2 -> L = L2. Theorem ctx2'_move_head : forall L E L1 L2, ctx2' L (E :: L1) L2 -> exists L', ctx2' L' L1 (E :: L2) /\ subset L' L.induction on 1. intros. case H1. case H2. exists (of' n1 T :: L3). split. search. backchain subset_refl. unfold. backchain ctx'_islist. apply IH to H2. case H4. exists (of' n2 T1 :: of' n1 T :: L4). split. search. unfold. case H5. search. unfold. search. case H5. backchain subset_add.Theorem ctx2'_is_ctx : forall L L1 L2, ctx2' L L1 L2 -> ctx' L. Theorem ctx2'_is_ctx2 : forall L L1 L2, ctx2' L L1 L2 -> ctx' L2. Define ctx'_prod : olist -> ty -> prop by ctx'_prod nil tunit; ctx'_prod (of' X T :: L) (prod T TE) := ctx'_prod L TE. Theorem type_of_tuple : forall L TE Vs FA, ctx'_prod L TE -> vars_of_ctx' L Vs -> {tm'_list_to_tuple Vs FA} -> {L |- of' FA TE}.induction on 1. intros. case H1. case H2. case H3. search. case H2. case H3. apply IH to H4 H5 H6. search.Theorem type_of_env_tuple : forall L L1 L2 Vs TE TE' Vs1 Vs2 FA, ctx2' L L1 L2 -> vars_of_ctx' L1 Vs1 -> vars_of_ctx' L2 Vs2 -> ctx'_prod L2 TE' -> ctx'_env_typ_split L1 TE' TE -> {crev Vs1 Vs2 Vs} -> {tm'_list_to_tuple Vs FA} -> {L |- of' FA TE}.induction on 5. intros. case H5. case H2. case H6. apply ctx2'_nil1 to H1. backchain type_of_tuple. case H2. case H6. apply ctx2'_move_head to H1. apply IH to H11 _ _ _ H8 H10 H7. monotone H13 with L. intros. apply subset_mem_trans to H12 H14. search. search.Theorem hoist_abs_body_typ : forall L L1 L2 T1 T2 TE TE' R R' G E Vs F, nabla x, ctx2' L L1 L2 -> {is_cty T1} -> vars_of_ctx' L2 Vs -> ctx'_env_typ_split L2 TE' TE -> {L, of' x T1 |- of''_body TE' (R x) T2} -> {hoist_abs R G E Vs R' F} -> {L2, of' G (arr' TE (arr' T1 T2)) |- of''_body TE' R' (arr' T1 T2)}.induction on 6. intros. case H6. case H5. apply ctx2'_is_ctx2 to H1. apply type_of_env_tuple to _ H3 _ _ H4 H7 H8 with L = L2. search. apply ctx2'_is_ctx to H1. apply ctx'_focus_inv to _ _ H9. case H5. assert {L, of' n1 T3, of' n2 T1 |- of''_body TE1 (R1 n2 n1) T2}. apply ctx2'_is_ctx to H1. apply is_cty_str to _ H9. assert ctx2' (of' n1 T3 :: L) L1 (of' n1 T3 :: L2). apply IH to H13 _ _ _ H10 H7. search. apply ctx2'_is_ctx to H1. apply ctx'_focus_inv to _ _ H8.Theorem abstract_body_typ : forall L T1 T2 TE R R' F, nabla x, ctx' L -> {is_cty T1} -> {L, of' x T1 |- of''_body TE (R x) T2} -> {abstract R R' F} -> nabla g, {of' g (arr' TE (arr' T1 T2)) |- of''_body TE (R' g) (arr' T1 T2)}.intros. case H4. assert {hoist_abs R n2 n3 cnil (R' n2) (x\F n3 x)}. apply hoist_abs_body_typ to _ _ _ _ H3 H6 with TE' = TE. search.% Type preservation lemma Theorem ch_typ_pres: forall L CL Vs M M' T, ctx' L -> ch_ctx CL -> vars_of_ctx' L Vs -> vars_of_ch_ctx CL Vs -> {L |- of' M T} -> {CL |- ch M M'} -> {L |- of'' M' T}.induction on 6. intros. case H6. % Case: M = (nat' N) case H5. search. %Context case apply ctx'_focus_inv to _ _ H7. case H9. % Case: M = (pred' M1) case H5. apply IH to _ _ _ _ H9 H7. apply hconstr_str to _ H8. apply hconstr_typ_pres to _ H10 _ H11. search. %Context case apply ctx'_focus_inv to _ _ H9. case H11. % Case: M = (plus' M1 M2) case H5. apply IH to _ _ _ _ H11 H7. apply IH to _ _ _ _ H12 H8. apply hcombine_str to _ H10. apply cappend_str to _ H9. apply hcombine_typ_pres to _ H13 H14 _ H15 H16. search. %Context case apply ctx'_focus_inv to _ _ H11. case H13. % Case: M = (ifz' M1 M2 M3) case H5. apply IH to _ _ _ _ H13 H7. apply IH to _ _ _ _ H14 H8. apply IH to _ _ _ _ H15 H9. apply hcombine3_str to _ H12. apply cappend_str to _ H10. apply cappend_str to _ H11. apply hcombine3_typ_pres to _ H16 H17 H18 _ H19 H20 H21. search. %Context case apply ctx'_focus_inv to _ _ H13. case H15. % Case: M = unit' case H5. search. %Context case apply ctx'_focus_inv to _ _ H7. case H9. % Case: M = (pair' M1 M2) case H5. apply IH to _ _ _ _ H11 H7. apply IH to _ _ _ _ H12 H8. apply hcombine_str to _ H10. apply cappend_str to _ H9. apply hcombine_typ_pres to _ H13 H14 _ H15 H16. search. %Context case apply ctx'_focus_inv to _ _ H11. case H13. % Case: M = (let' M1 R) case H5. apply IH to _ _ _ _ H11 H7. apply of'_is_cty to _ H11. apply IH to _ _ _ _ H12 H8. apply hcombine_abs_str to _ H10. apply cappend_str to _ H9. apply hcombine_abs_let_typ_pres to _ H13 H15 H16 H17. search. %Context case apply ctx'_focus_inv to _ _ H11. case H13. % Case: M = (fst' M1) case H5. apply IH to _ _ _ _ H9 H7. apply hconstr_str to _ H8. apply hconstr_typ_pres to _ H10 _ H11. search. %Context case apply ctx'_focus_inv to _ _ H9. case H11. % Case: M = (snd' M1) case H5. apply IH to _ _ _ _ H9 H7. apply hconstr_str to _ H8. apply hconstr_typ_pres to _ H10 _ H11. search. %Context case apply ctx'_focus_inv to _ _ H9. case H11. % Case: M = (app' M1 M2) case H5. apply IH to _ _ _ _ H11 H7. apply IH to _ _ _ _ H12 H8. apply hcombine_str to _ H10. apply cappend_str to _ H9. apply hcombine_typ_pres to _ H13 H14 _ H15 H16. search. %Context case apply ctx'_focus_inv to _ _ H11. case H13. % Case: M = (abs' R) case H5. apply is_cty_str to _ H10. apply IH to _ _ _ _ H9 H7. apply abstract_str to _ H8. apply of''_to_alter_ver to _ H12. apply of''_env_str to _ _ H14. apply abstract_fun_typ to _ _ H15 H13. apply abstract_body_typ to _ _ H15 H13. apply of''_env_is_cty to _ H16. apply of'_is_cty to _ H9. assert {L |- of''_body (prod (arr' TE (arr' T1 T2)) TE) (habs R'') (arr' T1 T2)}. assert {L |- of''_env (ccons (abs' (l\abs' (x\F l x))) FE) (prod (arr' TE (arr' T1 T2)) TE)}. apply of''_from_alter_ver to _ H22 H21. search. %Context case apply ctx'_focus_inv to _ _ H9. case H11. % Case: M = (clos' M1 M2) case H5. apply IH to _ _ _ _ H11 H7. apply IH to _ _ _ _ H12 H8. apply hcombine_str to _ H10. apply cappend_str to _ H9. apply hcombine_typ_pres to _ H13 H14 _ H15 H16. search. %Context case apply ctx'_focus_inv to _ _ H11. case H13. % Case: M = (open' M1 (f\e\app' f (pair' M1 (pair' M2 e)))) case H5. apply IH to _ _ _ _ H11 H7. apply IH to _ _ _ _ H12 H8. apply hcombine_str to _ H10. apply cappend_str to _ H9. apply hcombine_typ_pres to _ H13 H14 _ H15 H16. search. %Context case apply ctx'_focus_inv to _ _ H11. case H13. % Case: M = x apply ch_ctx_mem to _ H8. case H7. apply ch_ctx_ctx'_sync to H4 H3 H8. case H9. case H5. apply ctx'_mem to _ H12. case H11. apply ctx'_mem_sync to _ H10 H12. search.